HEATING OF A WALL OF FINITE THICKNESS BY A PERIODIC HEAT FLUX

A. M. Rushailo

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 132-134, 1966

In many practical applications (e.g., cyclical plasma accelerators, MHD generators) the cooled and uncooled walls of a channel are exposed to periodic heat fluxes, which to a first approximation can be represented by square waves [7]. The solution of a problem of this type for the case of a semi-infinite body is given in [2].

In this paper we present a solution to the problem of periodic heating of a wall of finite thickness with different cooling regimes.

In dimensionless variables, the governing equation and the initial and boundary conditions are

$$
\begin{gather*}
\frac{\partial \theta(\xi, \tau)}{\partial \tau}=\frac{\partial^{2} \theta(\xi, \tau)}{\partial \xi^{2}}, \\
\left(0 \leqslant \xi \leqslant 1, \quad \tau \geqslant 0, \quad \theta=\frac{T-T_{0}}{T_{0}}, \quad \xi=\frac{x}{h}, \quad \tau=\frac{a t}{h^{2}}\right), \tag{1}\\
\theta(\xi, 0)=0, \quad \frac{\partial \theta(0, \tau)}{\partial \xi}=-\gamma(\tau), \quad \frac{\partial \theta(1, \tau)}{\partial \xi}=-\beta \theta(1, \tau), \tag{2}\\
\gamma=\tau_{0} \eta(\tau), \quad \tau_{0}=\frac{q_{0} h}{T_{0} \lambda}, \quad \beta=\frac{\alpha h}{\lambda}, \quad \tau_{0}=\frac{a t_{0}}{h^{2}}, \quad \tau_{1}=\frac{a t_{1}}{h^{2}}, \\
\eta(\tau)=\left\{\begin{array}{l}
1, \quad n \tau_{1} \leqslant \tau \leqslant n \tau_{1}+\tau_{0} \\
0, \\
n \tau_{1}+\tau_{0}<\tau<(n+1) \tau_{1}, \quad n=0,1,2, \ldots .
\end{array}\right. \tag{3}
\end{gather*}
$$

Fig. 1
Here T_{0}, T are the initial and the instantaneous value of the temperature, h is the wall thickness, x the coordinate, t time, t_{0} the time of heat supply in one period, t_{1} the period of the heat flux, $\mathrm{q}_{0}=$ const the heat flux, λ, a, and α the thermal conductivity, thermal diffusivity, and heat transfer coefficient, τ the Fourier number, and β the Biot number.

We solve the problem by the Laplace transform method [2,3]. The transforms $\theta^{*}(5, p)$ and $\gamma^{*}(p)$ are governed by the equation and boundary conditions

$$
\begin{gather*}
\frac{d^{2} \theta^{*}(\xi, p)}{d \xi^{2}}=p \theta^{*}(\xi, p), \quad \frac{d \theta^{*}(0, p)}{d \xi}=-\Upsilon^{*}(p) \\
\frac{d \theta^{*}(1, p)}{d \xi}=-\beta \theta^{*}(1, p) \tag{4}
\end{gather*}
$$

The solution of (4) is easily found to be

$$
\begin{gather*}
\theta^{*}(\xi, p)=\gamma^{*}(p) \theta_{1}^{*}(\xi, p), \theta_{1}^{*}(\xi, p)= \\
=\frac{\cos [(\xi-1) i \sqrt{p}]-(\beta / i \sqrt{p}) \sin [(\xi-1) i \sqrt{p]}}{\beta \cos i \sqrt{p}-i \sqrt{p} \sin i \sqrt{p}} . \tag{5}
\end{gather*}
$$

The function $\theta_{\perp}(\xi, p)$ is a meromorph function of the complex variable p with first-order poles at the points p_{k} which satisfy the transcendental equation

$$
\begin{equation*}
z \operatorname{tg} z=\beta, \quad p=-z^{2} \tag{6}
\end{equation*}
$$

Evaluating the residues of $\theta^{*}{ }_{1}(\xi, p)$ at the points $p_{k}=-z_{k}{ }^{2}$ by the second expansion theorem [3], we find the inverse transform

$$
\begin{gather*}
\theta_{1}(\xi, \tau)=2 \sum_{k=1}^{\infty} F_{k}(\xi) z_{k}{ }^{2} \exp \left(-z_{k}{ }^{2} \tau\right) \\
F_{k}(\xi)=\frac{\left(z_{k}{ }^{2}+\beta^{2}\right) \cos \left(\xi z_{k}\right)-2 z_{k} \beta \sin \left(\xi z_{k}\right)}{z_{k}^{2}\left(z_{k}{ }^{2}+\beta^{2}+\beta\right)} \tag{7}
\end{gather*}
$$

Taking account of the convolution theorem and (5), we obtain the following expression for the inverse transform of $\theta^{*}(\xi, p)$:

$$
\begin{equation*}
\theta(\xi, \tau)=\int_{0}^{\tau} \gamma(y) \theta_{1}(\xi, \tau-y) d y \tag{8}
\end{equation*}
$$

Substituting (7) into (8) and changing the order of integration and summation, we obtain

$$
\begin{gather*}
\theta(\xi, \tau)=2 \gamma_{0} \sum_{k=1}^{\infty} F_{k}(\xi) G_{k}(\tau), \\
G_{k}(\tau)=z_{k}{ }^{2} \exp \left(-z_{k}{ }^{2} \tau\right) \int_{0}^{\tau} \eta(y) \exp \left(z_{k}^{2} y\right) d y \tag{9}
\end{gather*}
$$

In the following we represent the time τ in the form

$$
\begin{equation*}
\tau=m \tau_{1}+\tau_{*} \quad\left(0 \leqslant \tau_{*} \leqslant \tau_{1}, m=0,1,2, \ldots\right) \tag{10}
\end{equation*}
$$

Splitting the integral in (9) into a sum of m integrals, we find

$$
\begin{align*}
G_{k}(\tau)= & \exp \left(-z_{k}{ }^{2} \tau_{*}\right)\left\{\exp \left[z_{k}{ }^{2}\left(\left(\tau_{*}-\tau_{0}\right) \eta(\tau)+\tau_{0}\right)\right]-1+\right. \\
& \left.+\frac{\exp \left(z_{k}{ }^{2} \tau_{0}\right)-1}{\exp \left(z_{k}{ }^{2} \tau_{1}\right)-1}\left[1-\exp \left(-z_{k}{ }^{2} m \tau_{1}\right)\right]\right\} \tag{11}
\end{align*}
$$

Thus, we have obtained the solution to the problem in the form of a series (9), each term of which is a product of a function of the coordinate (7) and a function of time (11), under conditions (6) and (10), for z_{k}, m, and τ.

Fig. 2
We see from (10) and (11) that for all B, except $B=0$ (no heat flux), at $m \gg z_{1}^{-2} \tau_{1}^{-1}$ the initial transients decay and the temperature approaches a limiting periodic cycle with the period τ_{1}. We shall consider several limiting cases.

1. Let $\beta=\infty$. In this case (2), (6), and (7) yield

$$
\theta(1, \tau)=0, \quad z_{k}=1 / 2(2 k-1) \pi, \quad F_{k}(\xi)=\cos \left(\xi z_{k}\right) z_{k}^{-2}
$$

After the initial transient decays ($m \gg 2 \pi^{-2} \tau_{1}{ }^{-1}$) the temperature of the surface $\xi=0$ oscillates with a period τ_{1} between a maximum at $\tau_{*}=\tau_{0}$ and a minimum at $\tau_{0}=0$:

$$
\begin{equation*}
\theta_{\max }=2 \gamma_{0} \sum_{k=1}^{\infty} \frac{1}{z_{k}{ }^{2}} \frac{1-\exp \left(-z_{k}{ }^{2} \tau_{0}\right)}{1-\exp \left(-z_{k}{ }^{2} \tau_{1}\right)} \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{\mathrm{min}}=2 \gamma_{0} \sum_{k=1}^{\infty} \frac{1}{z_{k}{ }^{2}} \frac{\exp \left(z_{k}{ }^{3} \tau_{0}\right)-1}{\exp \left(z_{k} \tau_{1}\right)-1} \tag{12}
\end{equation*}
$$

Figure 1 shows the maximum and minimum (12) values of $\omega=\theta / \theta^{Q}$ for $\xi=0$ and $m=\infty$ as a function of τ_{0} for $\nu=\tau_{0} / \tau_{1}$ equal to $1,0.1$, and 0.01 (the tabular data were taken from [4,5]). The function ω is the ratio of the temperature $\theta=\theta(\xi, \tau)$ to the temperature $\theta^{\circ}=2 \gamma_{0} \tau^{1 / 2} \pi^{-1 / 2}$, which is the temperature of the surface of a semi-infinite body during the first cycle ($\mathrm{m}=0, \tau_{\mathrm{s}}=\tau_{0}$) [1, 2].

Thus, one can see from Fig. 1 that for $m \rightarrow \infty$ even in the case of a strongly cooled wall the surface temperature can exceed the maximum temperature of the first cycle ($\mathrm{m}=0$) by a factor of ten or more if the value of τ_{0} is low enough.

Figure 2 shows the distribution of the relative temperature $\omega(\xi)=\theta(\xi) / \theta^{0}$ in the wall for $\beta=m=\infty$ and two values $\tau_{*}=0$ and $\tau_{:}=\tau_{0}$ and fixed values $\tau_{0}=10^{-3}, \tau_{1}=10^{-2}$.
2. Let $\beta=0$. In this case (6) and (7) yield

$$
z_{k}=(k-1) \pi, \quad F_{k}(\xi)=\cos \left(\xi z_{k}\right) z_{k}^{-2}
$$

Since $z_{1}=0$, we separate out the first term of the series in (9). After some elementary transformations, we can represent the temperature $\theta(\xi, \tau)$ as a sum of a function linear in time and a periodic function $\varphi(5, \tau)$ with period τ_{1} :

$$
\theta(\xi, \tau)=A \tau+\varphi(\xi, \tau), \quad A=2 \gamma_{0} \frac{\tau_{0}}{\tau_{1}}
$$

$\varphi(\xi, \tau)=2 \tau_{0}\left[\tau_{0}\left(1-\frac{\tau_{k}}{\tau_{1}}\right)+\left(\tau_{*}-\tau_{0}\right) \eta(\tau)+\sum_{k=2}^{\infty} \frac{\cos \left(\xi z_{k}\right)}{z_{k}^{2}} G_{k}(\tau)\right]$.
The amplitude of the function φ for $m>\pi^{-2} \tau_{1}-1$ and $\xi=0$ is

$$
\begin{gather*}
\varphi_{0}=\varphi_{\tau_{*}=\tau_{0}}-\varphi_{\tau_{*}=0}=2 \tau_{0}\left\{\tau_{0}\left(1-\frac{\tau_{0}}{\tau_{1}}\right)+\right. \\
\left.+\sum_{k=2}^{\infty} \frac{1}{z_{k}{ }^{2}} \frac{1-\exp \left(-z_{k}{ }^{2} \tau_{0}\right)}{1-\exp \left(-z_{k} \tau_{1}\right)}\left[1-\frac{\exp \left(-z_{k}{ }^{2} \tau_{1}\right)}{\exp \left(-z_{k}{ }^{2} \tau_{0}\right)}\right]\right\} . \tag{1.4}
\end{gather*}
$$

The author is grateful to G. M. Bam-Zelikovich and A. B. Vatazhin for valuable discussions.

REFERENCES

1. A. M. Rushailo, "Measurement of heat fluxes and estimate of electrode temperature in a pulsed electromagnetic plasma accelerator, " PMTE, no. 4, 1965.
2. G. Carslaw and D. Jaeger, Conduction of Heat in Solids [Russian translation], Izd-vo "Nauka, " 1964.
3. M. A. Lavrent'ev and B. V. Shabat, Methods of the Theory of Functions of a Complex Variable [in Russian]. Fizmatgiz, 1958.
4. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Fizmatgiz, 1962.
5. Library of Mathematical Tables, vol. 9, Tables of Elementary Functions ($\sin x, \cos x, e^{x}, e^{-x}$), VTs AN SSSR, 1960.
