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HEATING OF A WALL OF FINITE THICKNESS BY A PERIODIC HEAT FLUX
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In many practical applications (e.g., cyclical plasma accelera-
tors, MHD generators) the cooled and uncooled walls of 2 channel are
exposed to periodic heat fluxes, which to a first approximation can
be represented by square waves [1]. The solution of a problem of this
type for the case of a semi-infinjte body is given in [2].

In this paper we present a solution to the problem of periodic
heating of a wall of finite thickness with different cooling regimes.

In dimensionless variables, the governing equation and the initial
and boundary conditions are

(e, 7) _ (. T)

2 02 L
T—T t
(o<e<t =m0 o=Fpt. t=F. T=75), @
a0 (0, a6 (4, :
06 0=0, ey EEPe_mu, @

qok ak aty at,
T ="M () 'ro=m, B=T, To:-..—hi-, 71=Tr'

1](1):{ L gt 410
0, nytv<r<n+n, 2=0,1,2,... (3)

il
W
min| N\

4

»=d \
M \

14 \

w’ \

wt owt w? w o,
Fig. 1

Here Ty, T are the initial and the instantaneous value of the tempera-
ture, his the wall thickness, x the coordinate, t time, tqthe time of
heat supply in one period, ty the period of the heat flux, gq = const
the heat flux, A, @, and o the thermal conductivity, thermal dif-
fusivity, and heat transfer coefficient, 7 the Fourier nurhber, and 8
the Biot number.

We solve the problem by the Laplace transform method [2, 3]
The transforms 6%(&, p) and y*(p) are governed by the equation and
boundary conditions '
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The solution of (4) is easily found to be
0% (€, p)=1*(p) 0:* (€, P): 6.* (€, P)=
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The function 6%, (£, p) is a meromorph function of the complex
variable p with first-order poles at the points p; which satisfy the
transcendental equation
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Evaluating the residues of 6* (&, p) at the points Pk = -zkz by the
second expansion theorem [3], we find the inverse transform
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Taking account of the convolution theorem and (5), we obtain the
following expression for the inverse transform of 6*(£, p):
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Substituting (7) into (8) and changing the order of integration and
summation, we obtain
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In the following we represent the time 7 in the form

T = mT + Ty O Te <1, m=10,1,2,...) (10)

Splitting the integral in (9) into a sum of m integrals, we find
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Thus, we have obtained the solution to the problem in the form
of a series (9), each term of which is a product of a function of the
coordinate (7) and a function of time (11), under conditions (6) and
(10), for zp, m, and T,
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We see from (10) and (11) that for all B, except =0 (no heat
flux), at m > z,"'7;~! the initial transients decay and the tempera-
ture approaches a limiting periodic cycle with the period 7. We
shall consider several limiting cases,

1, Let B = o0, In this case (2), (6), and (7) yield

8(1, ) =0, z=",@2k—1)a, Fy({ = cos(E5)5
After the initial transient decays (m > 2n2t71) the temperature of
the surface § = 0 oscillates with a period 7| between a2 maximum at
Ty = Tqand a minimum at 7, = 0:
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Figure 1 shows the maximum and minimum (12) values of
w=6/6"for £=0and m = o as a function of 1o for v = 1¢/r) equal
to 1, 0.1, and 0,01 (the tabular data were taken from [4,5]). The
function w is the ratio of the temperature 6 = 6 (§,7) to the tempera-
ture 0° = 2ygr’2 ™", which is the temperature of the surface of a
semi-infinite body during the first cycle (m =0, 7, = 79 [1, 2,

Thus, one can see from Fig. 1 that for m — » even in the case
of a strongly cooled wall the surface temperature can exceed the
maximum temperature of the first cycle {m = 0) by a factor of ten
or more if the value of 74 is low enough.

Figure 2 shows the distribution of the relative temperature
w(k) = 8(5)/6°in the wall for 8 = m = « and two values 7, = 0 and
T4 = 79 and fixed values Ty = 1073, 7, = 10-2,

2, Let 8 =0, In this case (6) and (7) yield

2= (k — ), Fy () = cos (§z)z,2,

Since z, = 0, we separate out the first term of the series in (9). After
some elementary transformations, we can represent the temperature
6(E,7) as a sum of a function linear in time and a periodic function
(&, T) with period T:
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The amplitude of the function ¢ for m » n~?y~1 and £ =01is
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